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Abstract
At a sufficiently large Reynolds number the flow of a classical fluid becomes
turbulent. Typically, turbulent energy is injected into large-scale eddies, from
which it flows through the action of the non-linear term in the Navier–Stokes
equation into smaller and smaller eddies until the scale of the motion is small
enough that the energy can be dissipated by viscosity. In a superfluid (liquid
4He or liquid 3He), which has no viscosity, this source of dissipation is absent,
so that perhaps the flow of turbulent energy persists down to atomic scales;
furthermore, the absence of viscosity seems to imply that the Reynolds number
is infinite. However, turbulent motion in a superfluid is restricted by quantum
effects, associated with the quantization of angular momentum, and it will
be shown how these effects change this picture and lead to an effectively finite
Reynolds number, with dissipation that mimics the effect of viscosity and arises
from the radiation of sound by special types of quantized motion.

(Some figures in this article are in colour only in the electronic version)

1. Introduction: classical turbulence

An understanding of turbulence in a superfluid depends on some understanding of turbulence
in a classical fluid [1]. This latter case is based on the Navier–Stokes equation

∂v
∂ t

+ (v · ∇)v = − 1

ρ
∇ p + ν∇2v, (1)

where p is the pressure and ν the kinematic viscosity. We note the presence of the non-
linear inertial term, (v · ∇)v, and the term, ν∇2v, describing the dissipative effect of viscosity.
Turbulent solutions of the Navier–Stokes equation exist only if the Reynolds number, Re, is
sufficiently large. This dimensionless number is a measure of the ratio of the magnitude of the
non-linear term to that of the dissipative term;for a characteristic velocity U and a characteristic
length scale R, it can be written as U R/ν. In a typical turbulent flow the shear generated by
flow past a boundary leads to the injection of energy in the form of large eddies, with a
size determined by the characteristic dimensions of the boundary. As long as the Reynolds
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number associated with these eddies is large compared with unity, viscosity has a negligible
effect. However, the eddies do not persist, because the non-linear term in the Navier–Stokes
equation leads to a coupling between motion on different length scales and energy is therefore
flows from the large eddies to smaller eddies. It is believed that this transfer takes place in
a cascade (the Richardson cascade), from large eddies to slightly smaller eddies, and then to
slightly smaller eddies again, and so on. This process continues, with conservation of energy,
until the Reynolds number of the smallest eddies falls to unity, when the energy is lost by
viscous dissipation, and the cascade is terminated. The character of the turbulence is strongly
influenced by the range of eddy sizes involved and therefore by the Reynolds number of the
largest eddies, which is determined by the characteristic length associated with the obstacle
inducing the turbulence and the characteristic flow velocity past this obstacle. It is interesting
to ask how the turbulent energy is distributed over different length scales in the Richardson
cascade, or equivalently over different wavenumbers in a spatial Fourier analysis of the velocity
field. In suitably simple cases, such as flow through a grid, the turbulence is approximately
homogeneous and isotropic, and this distribution can be written in terms of an energy spectrum
E(k), such that the energy per unit mass associated with wavenumbers having magnitude in a
range dk is E(k) dk. Over the range of wavenumbers where energy is conserved (the inertial
range) this spectrum has, approximately, the Kolmogorov form

E(k) = Cε2/3k−5/3, (2)

where C is a constant of order unity and ε is the constant rate at which energy per unit mass
flows down the cascade. The cascade is terminated by viscosity at a wavenumber of order the
Kolmogorov dissipation wavenumber, given by

kd = ε1/4ν−3/4. (3)

For semiquantitative discussions it is often useful to derive from equation (2) a quantity that we
can loosely describe as the mean square velocity associated with eddies of size r , and which
can be written

v2
r ∼ ε2/3r2/3. (4)

The rate of viscous dissipation of energy in homogeneous turbulence, taking place around the
wavenumber (3), can be written

ε = ν〈ω2〉, (5)

where 〈ω2〉 is the mean square vorticity in the fluid.

2. Superfluids

Superfluidity [2] is associated with the formation in a fluid of a Bose condensate, in which a
macroscopic fraction of the fluid particles, assumed to be Bosons, exists in a single quantum
state. It was discovered first in the liquid phase of the heavier isotope of helium, 4He, where
it exists at temperatures less than about 2.2 K. Much more recently it has been found in Bose-
condensed gases, produced by laser and evaporative cooling techniques at temperatures below
about 100 nK. In a more subtle way it can exist also in a fluid of Fermi particles, such as
liquid 3He, in which the particles undergo Cooper pairing, the Cooper pairs then undergoing
a form of Bose condensation; this type of Bose condensation of Cooper pairs of electrons is
responsible for superconductivity.

At a finite temperature superfluids exhibit two-fluid behaviour, in which a normal fluid,
behaving like a conventional viscous fluid, coexists with a superfluid component, which is able
to flow without viscous dissipation. The normal fluid is composed of thermal excitations; the
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superfluid component is formed from what remains of the ground state, including the Bose
condensate. The lack of viscous dissipation in the superfluid component is connected with the
Bose condensation, superfluid flow being associated with flow of this condensate.

In this paper we shall be concerned with the behaviour of a superfluid at a very low
temperature, when the density of normal fluid is so small that it can be neglected, so that the
whole fluid can flow without viscous dissipation. More specifically, we shall describe the
behaviour of such a superfluid when it is turbulent. It turns out that flow of the superfluid
can indeed be turbulent. Furthermore, on large enough length scales there is likely to be
an essentially classical Richardson cascade in which energy flows from large-scale eddies to
successively smaller eddies [3]. Given that there can be no viscous dissipation, we are led to
ask whether dissipation does in fact occur, and if so, how, and on what length scale. Perhaps
dissipation can set in only on atomic scales, resulting in fluid flows with Reynolds numbers
that are very much larger than is possible in a conventional viscous fluid. As we shall show,
however, the possibility of flow with such extreme Reynolds numbers is not realized, owing to
the intervention on small length scales of quantum effects, to which we now turn our attention.

2.1. Quantum restrictions on superfluid flow

As we have suggested, superfluid flow is closely linked to flow of the condensate. The
condensate is characterized by a macroscopic number of particles in a single quantum state.
Such a situation is found also for photons in a laser, where it gives rise to the formation of
a coherent electromagnetic field. Superfluidity is associated with the formation of a similar
coherent field, but now a coherent particle field, formed, in the case of 4He, from the helium
atoms, and superfluid flow at velocity vs arises when there is a gradient in the phase (S) of
the wavefunction into which condensation has taken place, as in ordinary quantum mechanics;
more precisely

vs = h̄

m4
∇S, (6)

where m4 is the mass of a helium atom. The coherent particle field, or condensate wavefunction,
must be single valued, and this leads to a quantum condition on the hydrodynamic circulation
for any closed circuit in the helium

∮
vs · d� = nκ, (7)

where n is an integer and κ = 2π h̄/m4 is the quantum of circulation; clearly this condition
amounts essentially to the quantization of angular momentum.

It follows from equations (6) and (7) that rotational motion in a simply connected volume
of the superfluid can exist only in the form of quantized vortex lines, round which there is an
irrotational circulation given by equation (7), in practice with n = 1 (figure 1). Along the line
itself superfluidity must be destroyed, to avoid an infinite superfluid velocity, the destruction
extending over a core, which for 4He is of atomic size; away from the core the velocity falls off
with distance as 1/r . Vortex lines must either end on a solid boundary or form closed curves in
the liquid. If placed in a vessel rotating at a steady angular velocity 	, the superfluid mimics
uniform rotation as best it can by becoming filled with a uniform array of vortex lines directed
along 	 with density 2	/κ . As is easily seen, the flow on a scale large compared with the
vortex spacing is in fact then closely similar to uniform rotation. An analogous situation is
found in a turbulent superfluid.
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Figure 1. A quantized vortex line.

3. Quantum turbulence at very low temperatures

As we have mentioned, flow of the superfluid component can become turbulent, a form of
turbulence now often called quantum turbulence [3]. The rotational motion characteristic of
turbulent flow must take the form of some more or less irregular configuration of quantized
vortex lines, often called a vortex tangle.

We note that according to equation (4) the average circulation associated with classical
eddies of size r in the inertial range must be given by


 ∼ 2πε1/3r4/3. (8)

If 
 � κ , we can think of the eddy of size r as of necessity containing many quanta of
circulation. It seems reasonable to suppose that, if this condition holds, the eddies behave
classically, as we have suggested, but if it does not we can expect serious departures from
classical behaviour. The condition

� ∼ κ3/4ε−1/4 (9)

defines the length scale at which there is the change of behaviour: for r � � we expect classical
behaviour; for r � � we expect quantum behaviour.

To proceed further we must take account of the fact that quantum turbulence involves
configurations of quantized vortex lines. It follows from equations (4) and (9) that � ∼ κv−1

� .
We assume for the moment that the vortex lines are more or less evenly spaced and have
curvatures of order the reciprocal of this spacing (a ‘smooth tangle’: figure 2); in other
words there is no structure on scales significantly less than the average spacing, except for
the vortex cores. In this case � is seen to be simply the average spacing between the lines, as
we see from the fact that the velocity at a distance � from an isolated vortex is of order κ/�.
Our conclusion that classical behaviour can be expected on length scales much larger than
this spacing, but not on smaller scales, has been verified by direct computer simulations [4],
which have demonstrated the existence of an inertial-range Kolmogorov spectrum, provided,
of course, that there is some source of dissipation at small length scales. There can be no
Kolmogorov spectrum without this dissipation.

Experiments at very low temperatures that are directly relevant have not yet been
completed. Experiments at higher temperatures do indicate the existence of a Kolmogorov
spectrum [3], but dissipation is then provided by the normal fluid, as described in the next
section. The rest of our discussion is therefore theoretical speculation, which remains to be
verified experimentally.
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Figure 2. Smooth vortex tangle with vortex spacing �.

4. Dissipation in quantum turbulence at very low temperatures

We come then to the question posed in section 2: what mechanism can provide dissipation at
very low temperatures, and what is the effective Reynolds number for the quantum turbulence?

We remark first that, at temperatures where there is a significant fraction of normal fluid,
two dissipative processes are known to operate: first there can be viscous dissipation in
the normal fluid; and secondly the motion of a vortex relative to the normal fluid results
in a dissipative drag on the vortex [3]. Both these processes cease to operate at the lowest
temperatures. At first sight there is no mechanism for dissipation at the lowest temperatures,
and there seems to be the possibility that a Kolmogorov spectrum may not exist.

That this possibility can be ruled out follows from a simple practical observation: vortices
can generate sound, as is clear from the noise produced by an aircraft. It is easily shown that
a vortex (quantum or not), oscillating in position, leads to an oscillating pressure, which leads
in turn to the radiation of sound (recall that towards the centre of a vortex there is a reduction
in pressure from the Bernoulli effect). The intensity of the radiation increases strongly with
increasing frequency. In a random homogeneous configuration of quantum vortices with
spacing � the frequency with which the vortices oscillate in position is of order κ/�2. This
frequency proves to be much too small for effective radiation of sound, so that we are led to the
conclusion that on length scales of order or greater than � there is no effective dissipation [3].

The only way in which the required high frequencies can be produced lies in the production
of vortex structures that are much smaller than �, contrary to the assumption we made in
the preceding section. The fact that such structures might form is not surprising, since our
experience with the Richardson cascade suggests that, in the absence of dissipation, turbulent
energy will flow into smaller and smaller structures. We ask what form these small structures
take, and in what ways they can radiate sound [3].

Computer simulations [5] show that the evolution of the turbulent vortex tangle leads
occasionally to the close approach of two vortices, this alone producing a local small-scale
structure. More importantly, such simulations, especially those using a model superfluid
described by the non-linear Schrödinger equation [6], show that this close approach is
frequently accompanied by a vortex reconnection, as shown in figure 3. Immediately after
such a reconnection both vortices have on them a sharp kink, which serves as the source of
waves on the vortices, in much the same way as the plucking of a stretched string generates
waves on the string. The waves on a vortex are Kelvin waves [7]: they are helical waves with
the approximate dispersion relation

ω = κk2

4π
ln

(
1

kξ

)
, (10)
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Figure 3. A vortex reconnection.

where ξ is the radius of the vortex core. The Kelvin waves can radiate sound [8]. However, the
range of Kelvin-wave frequencies produced directly by a single reconnection does not extend
to sufficiently high values with sufficient intensity to produce significant dissipation. However,
repeated reconnections can lead to a build-up of the Kelvin-wave amplitudes, until eventually
non-linear interactions lead to the generation of higher frequencies. It seems that this process
of transfer of Kelvin-wave energy to higher and higher frequencies takes place in a kind of
cascade, analogous to the Richardson cascade. Eventually we can expect the energy to reach
frequencies of order 1 GHz, where efficient sound radiation can take place.

The reconnection process itself, which can be described only quantum mechanically, also
leads to some radiation of sound. The resulting energy loss in 4He is quite small and can
probably be neglected, although it is likely to be much larger in cases where the vortex core is
larger, notably in Bose-condensed gases.

Details of the probable characteristics of the Kelvin-wave cascade have come from
computer simulations. Once the amplitude of the waves has become sufficiently large, the
associated steady-state energy spectrum seems to have the rough form [9]

Ẽ(k̃) ∼ Aρκ2k̃−1, (11)

independent, roughly, of the energy flow ε̃, where Ẽ(k̃) dk̃ is the Kelvin-wave energy per unit
length of vortex in the range dk̃ of Kelvin wavenumbers (a spectrum that is probably more
accurate has been proposed in [10]).

Thus we can summarize the probable structure of homogeneous quantum turbulence in
liquid 4He at a very low temperature as follows (figure 4). The turbulence takes the form of a
more or less random configuration of quantized vortex lines. On length scales greater than the
average spacing between these lines, the fluid dynamics is relatively unaffected by quantum
effects, and an inertial-range Richardson–Kolmogorov cascade is formed, in which energy is
carried towards smaller length scales without dissipation. On scales less than the average line
spacing, quantum effects become dominant, and energy is carried to smaller length scales by
a Kelvin-wave cascade, in which there is no dissipation until the Kelvin-wave frequency is so
high that effective energy loss by radiation of sound becomes possible, when the Kelvin-wave
cascade is terminated.

We comment in passing that at very low temperatures the thermal excitations in superfluid
4He are phonons, or quantized sound waves. Thus the dissipation that we are describing
involves simply the conversion of turbulent energy into heat, as in any viscous process.

We turn finally to the rate at which dissipation occurs, and to the question whether the
turbulent superfluid is characterized by some effective Reynolds number. It is convenient now
to introduce two lengths: the length, L, of vortex line per unit volume; and the length, L0,
of vortex line after smoothing to remove the Kelvin waves. It can be shown that these two
lengths differ by a factor that is only weakly dependent on L and typically only a little larger
than unity [3]. The average spacing, �, between the smoothed lines is equal to L−1/2

0 . From
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Figure 4. The Richardson and Kelvin-wave cascades.

equation (9) we find then that

ε ∼ κ3�−4 = κ3 L2
0 = Aκ(κ L)2, (12)

where the dimensionless factor A is a little larger than unity. The quantity (κ L)2 has the
dimensions of vorticity squared, and it is clear that, since all vorticity in the superfluid is
confined to the cores of vortex lines, this quantity must be some measure of the mean square
vorticity in the fluid (see [11] for a full discussion). We can therefore compare equation (12)
with equation (4), to find that the turbulent superfluid has an effective kinematic viscosity given
by

ν ′ = Aκ. (13)

Thus the turbulent superfluid is behaving as far as dissipation is concerned like a classical
fluid with an effective kinematic viscosity equal to roughly the quantum of circulation. As a
result of what is probably a numerical accident, this value of the kinematic viscosity is not
very different from that of the normal phase of liquid 4He. Thus in a possible quest for a very
high Reynolds number in turbulent flow nothing seems to be gained by cooling the helium
from the normal phase to a very low temperature in the superfluid phase. This conclusion
holds in spite of the fact that the superfluid has zero viscosity: our analysis suggests that the
quantization conditions governing turbulent flow in the superfluid phase have the curious effect
of introducing dissipation at a rate similar to that in the normal phase. It remains to be verified
experimentally whether this is indeed the case.
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